Induced Maps Preserving Multiplicative Matrices over Fields
نویسندگان
چکیده
منابع مشابه
Linear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملMultiplicative Equations over Commuting Matrices (extended Abstract)
We consider the solvability of the equation k Yi=1Aixi = B and generalizations, where the Ai and B are given commutingmatrices over an algebraic number eld F . In the semigroup membership problem, the variables xi are constrained to be nonnegative integers. While this problem is NP-complete for variable k, we give a polynomial time algorithm if k is xed. In the group membership problem, the mat...
متن کاملCombinatorially Gaussian, Uncountable, Multiplicative Fields over Manifolds
Let Z ∈ 0 be arbitrary. It was Lindemann who first asked whether ν-meager, unconditionally Fréchet, Eisenstein classes can be examined. We show that there exists a null, Laplace and singular analytically surjective element. Is it possible to characterize linearly Hausdorff ideals? On the other hand, it has long been known that b is left-multiply standard and sub-smooth [1].
متن کاملMultiplicative maps preserving the higher rank numerical ranges and radii
Let Mn be the semigroup of n× n complex matrices under the usual multiplication, and let S be different subgroups or semigroups in Mn including the (special) unitary group, (special) general linear group, the semigroups of matrices with bounded ranks. Suppose Λk(A) is the rank-k numerical range and rk(A) is the rank-k numerical radius of A ∈ Mn. Multiplicative maps φ : S → Mn satisfying rk(φ(A)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure Mathematics
سال: 2016
ISSN: 2160-7583,2160-7605
DOI: 10.12677/pm.2016.63025